Hyperpolarized 13C NMR observation of lactate kinetics in skeletal muscle.

نویسندگان

  • Jae Mo Park
  • Sonal Josan
  • Dirk Mayer
  • Ralph E Hurd
  • Youngran Chung
  • David Bendahan
  • Daniel M Spielman
  • Thomas Jue
چکیده

The production of glycolytic end products, such as lactate, usually evokes a cellular shift from aerobic to anaerobic ATP generation and O2 insufficiency. In the classical view, muscle lactate must be exported to the liver for clearance. However, lactate also forms under well-oxygenated conditions, and this has led investigators to postulate lactate shuttling from non-oxidative to oxidative muscle fiber, where it can serve as a precursor. Indeed, the intracellular lactate shuttle and the glycogen shunt hypotheses expand the vision to include a dynamic mobilization and utilization of lactate during a muscle contraction cycle. Testing the tenability of these provocative ideas during a rapid contraction cycle has posed a technical challenge. The present study reports the use of hyperpolarized [1-(13)C]lactate and [2-(13)C]pyruvate in dynamic nuclear polarization (DNP) NMR experiments to measure the rapid pyruvate and lactate kinetics in rat muscle. With a 3 s temporal resolution, (13)C DNP NMR detects both [1-(13)C]lactate and [2-(13)C]pyruvate kinetics in muscle. Infusion of dichloroacetate stimulates pyruvate dehydrogenase activity and shifts the kinetics toward oxidative metabolism. Bicarbonate formation from [1-(13)C]lactate increases sharply and acetyl-l-carnitine, acetoacetate and glutamate levels also rise. Such a quick mobilization of pyruvate and lactate toward oxidative metabolism supports the postulated role of lactate in the glycogen shunt and the intracellular lactate shuttle models. The study thus introduces an innovative DNP approach to measure metabolite transients, which will help delineate the cellular and physiological role of lactate and glycolytic end products.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperpolarized 13C NMR studies of glucose metabolism in living breast cancer cell cultures.

The recent development of dissolution dynamic nuclear polarization (DNP) gives NMR the sensitivity to follow metabolic processes in living systems with high temporal resolution. In this article, we apply dissolution DNP to study the metabolism of hyperpolarized U-(13)C,(2)H7-glucose in living, perfused human breast cancer cells. Spectrally selective pulses were used to maximize the signal of th...

متن کامل

Modeling non‐linear kinetics of hyperpolarized [1‐13C] pyruvate in the crystalloid‐perfused rat heart

Hyperpolarized (13)C MR measurements have the potential to display non-linear kinetics. We have developed an approach to describe possible non-first-order kinetics of hyperpolarized [1-(13)C] pyruvate employing a system of differential equations that agrees with the principle of conservation of mass of the hyperpolarized signal. Simultaneous fitting to a second-order model for conversion of [1-...

متن کامل

Evidence for reverse flux through pyruvate kinase in skeletal muscle.

Conversion of lactate to glucose was examined in myotubes, minced muscle tissue, and rats exposed to 2H2O or 13C-enriched substrates. Myotubes or minced skeletal muscle incubated with [U-(13)C3]lactate released small amounts of [1,2,3-(13)C3]- or [4,5,6-(13)C3]glucose. This labeling pattern is consistent with direct transfer from lactate to glucose without randomization in the tricarboxylic aci...

متن کامل

Incorporation and utilization of [3-13C]lactate and [1,2-13C]acetate by rat skeletal muscle.

Skeletal muscle can utilize many different substrates, and traditional methodologies allow only indirect discrimination between oxidative and nonoxidative uptake of substrate, possibly with contamination by metabolism of other internal organs. Our goal was to apply 1H- and 13C-nuclear magnetic resonance spectroscopy to monitor the patterns of [3-13C]lactate and [1,2-13C]acetate (model of simple...

متن کامل

Hyperpolarized 13C Metabolic MRI of the Human Heart

RATIONALE Altered cardiac energetics is known to play an important role in the progression toward heart failure. A noninvasive method for imaging metabolic markers that could be used in longitudinal studies would be useful for understanding therapeutic approaches that target metabolism. OBJECTIVE To demonstrate the first hyperpolarized 13C metabolic magnetic resonance imaging of the human hea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 218 Pt 20  شماره 

صفحات  -

تاریخ انتشار 2015